Filter: Forskjell mellom sideversjoner

Fra astrofoto
Hopp til navigering Hopp til søk
mIngen redigeringsforklaring
mIngen redigeringsforklaring
Linje 128: Linje 128:
</li>
</li>
</ul>
</ul>
==
== Okularfiltre, for å øke kontraster og se flere detaljer på planeter og galakser og andre objekt på stjernehimmelen skrues slike filtre inn i okular, f.eks:
=== ND96 gråtonefilter reduserer gjenskinn fra måneoverflaten og samtidig forbedrer kontrasten og reduserer lyset jevnt. Perfekt  mot f.eks mot månen,
=== No.12 gulfilter for å observere planetene Jupiter, Saturn, Neptun og Uranus
=== No.23A oransjefilter for planeten Mars
=== No.58 grønnfilter brukes sammen med ND96 for å observere månen
=== No.80A blåfilter for å observere planetene Jupiter

Sideversjonen fra 15. apr. 2023 kl. 21:37

Filtre, smalbåndsfiltre (narrowband) slipper gjennom kun deler av lysspekteret

Filtrene finnes i forskjellig båndbredde (Bandwidth/Bandpass/FWHM), 12nm, 6nm, 3nm og 1nm. Smalere båndbredde blir dyrere og slipper gjennom mindre lys og trenger dermed lengre eksponeringstid.

  • R: rødt 600nm – 700nm
    LRGB-filtere
  • G: grønt 500nm – 600nm
  • B: blått 400nm – 500nm
  • L: Luminens (UV+IR blokkeringsfilter, slipper gjennom lys mellom 400nm – 700nm )
  • Ha: Hydrogen-alfa. Nybegynnere spør ofte hvilket smalbåndsfilter som anbefales å kjøpe først, og det er alltid et Ha (eller "Hα") filter. H-alfa er en spesifikk dyprød synlig spektrallinje med en bølgelengde på 656,3nm. Mange tåker på nattehimmelen (og til og med noen galakser) sender ut et sterkt lyssignal i denne bølgelengden, og et Hafilter hjelper til med å isolere og registrere dette signalet med kameraet ditt.
    Smallbånd SII, Ha og OII filtere
  • SII, svovel: Både astrofoto og visuelle observasjoner gir også en enorm kontrastforbedring ved SII-utslippståker. Viktig å ha et IR-blokkfilter. Lys på 671,7nm og 673,0nm
  • OIII, oksygen: Både astrofoto og visuelle observasjoner gir også en enorm kontrastforbedring ved OIII-utslippståker. Viktig å ha et IR-blokkfilter. Lys på 495,9nm og 500,7nm.
  • Hb: Hydrogen-beta: lys på 486.1nm
  • Kombinasjonsfiltre med flere kanaler er stadig mer populære
Kombinasjonsfilter Hb OIII Ha SII
Altair Astro/Skytech Tri-Band OSC 35 nm 12 nm -
Altair Astro/Skytech Quad-Band OSC 35 nm 35 nm
Optolong L-eNhance 24 nm 10 nm -
Optolong L-eXtreme Dual-band - 7 nm 7 nm
Optolong L-Ultimate dual-3nm - 3 nm 3 nm
Hutech IDAS NB1 32 nm 20 nm -
Hutech IDAS NB2 - 21 nm 19 nm -
Hutech IDAS NB3 - 21 nm - 19 nm
STC Duo Narrowband - 10 nm 10 nm -
ZWO Duo-Band 35 nm 15 nm -
Radian Telescopes OPT Triad Ultra (Quad-Band) 5 nm 4 nm 4 nm 4 nm
Radian Telescopes OPT Triad (Tri-Band) 18 nm 3 nm -
  • IR-blokkeringsfilter eksempel
  • Fotometriske, Sloan filtre er tilsvarende de som ble brukt til Sloan Digital Sky Survey
  • Lysforurensningsfilter (City Light Suppression/light pollution filter, CLS) slipper gjennom 450nm til 540nm og over 650nm. Typisk lysforurensing var tidligere før introduksjon av LED-lys: Hg(kvikksølv) 435.8nm 546.1nm 577nm 578.1nm Na(natrium) 598nm 589.6nm 615.4nm 616.1nm Se eksempel på filtre Astronomik CLS og Optolong L-pro
  • UHC (Ultra High Contrast) filter, slipper gjennom O-III, H-beta og noe H-alfa. eksempel Optolong UHC
  • "Hubble-paletten" legger H-alfa til grønt, SII svovel til rødt og OIII oksygen til blått. Det kan høres rart ut å sette H-alfa til grønn, når det i virkeligheten er en rød bølgelengde. Imidlertid ble dette ifølge NASA gjort for å vise struktur og detaljer bedre i tåker.
  • == == Okularfiltre, for å øke kontraster og se flere detaljer på planeter og galakser og andre objekt på stjernehimmelen skrues slike filtre inn i okular, f.eks: === ND96 gråtonefilter reduserer gjenskinn fra måneoverflaten og samtidig forbedrer kontrasten og reduserer lyset jevnt. Perfekt mot f.eks mot månen, === No.12 gulfilter for å observere planetene Jupiter, Saturn, Neptun og Uranus === No.23A oransjefilter for planeten Mars === No.58 grønnfilter brukes sammen med ND96 for å observere månen === No.80A blåfilter for å observere planetene Jupiter